

Roll No.

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.E. / B. Tech / B. Arch (Full Time) - END SEMESTER EXAMINATIONS, May.2025

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
Semester VI
EE5603 PROTECTION AND SWITCHGEAR
(Regulation 2019)

Time: 3hrs

Max.Marks: 100

CO 1	Ability to analyze different types of faults and their effects on the power system and understand the practical significance of protection zones
CO 2	Understanding the basic principles, construction and characteristics of different Electromagnetic relays
CO 3	Ability to protect different power equipment like transformer, generator etc., against various electrical faults
CO 4	Understanding different aspects of static relays and numerical protection schemes
CO 5	Able to understand the principles, construction, selection and problems associated with Different types of circuit breaker

BL – Bloom's Taxonomy Levels

(L1 - Remembering, L2 - Understanding, L3 - Applying, L4 - Analyzing, L5 - Evaluating, L6 - Creating)

PART- A (10 x 2 = 20 Marks)
(Answer all Questions)

Q. No	Questions	Marks	CO	BL
1	Justify overlapping in zones of protection schemes for power systems.	2	CO1	L2
2	Define unsymmetrical faults.	2	CO1	L1
3	Draw the characteristics of an directional over current relay on an R-X diagram	2	CO2	L2
4	What is the operating principle of Time- Distance Impedance Relay.	2	CO2	L2
5	Star-connected, 3-phase, 10 MVA, 6.6 kV alternator is protected by circulating current protection, the star point being earthed via a resistance r . Estimate the value of earthing resistor if 85% of the stator winding is protected against earth faults. Assume an earth fault setting of 20%. Neglect the impedance of the alternator winding.	2	CO3	L2
6	Draw the connections of Merz-Price voltage balance scheme for all the three phases of the line protection .	2	CO3	L2
7	Give the block diagram of time current static relay	2	CO4	L2
8	Enlist the advantages of numeric relays	2	CO4	L2
9	How does oil help in arc extinction	2	CO5	L2
10	Why is current interruption easier in an a.c. circuit than in a d.c. circuit ?	2	CO5	L2

PART- B (5 x 13 = 65 Marks)

Q. No	Questions	Marks	CO	BL
11 (a) (i)	Obtain the expression for fault current and voltages in case of Double line to Ground fault by symmetrical component method	8	CO1	L3
(ii)	The estimated short-circuit MVA at the bus-bars of a generating station A is 1500MVA and of another station B is 1200MVA. The generated voltage at each station is 33kV. If these stations are interconnected through a line	5	CO1	L5

	having a reactance of 1Ω and negligible resistance, calculate the possible short-circuit MVA at both stations			
OR				
11 (b) (i)	A balanced star connected load takes 90 A from a balanced 3-phase, 4-wire supply. If the fuses in the Y and B phases are removed, find the symmetrical components of the line currents (i) before the fuses are removed (ii) after the fuses are removed	5	CO1	L5
(ii)	Obtain the expression for fault current and voltages in case of Single line to Ground fault by symmetrical component method	8	CO1	L3
12 (a)	With neat diagram explain the working principle of an induction type power relay and hence derive an expression for torque equation	13	CO2	L3
OR				
12 (b)	Explain in detail the operation and different types of impedance relays.	13	CO2	L3
13(a)(i)	Analyze with case studies the efficacy of differential protection scheme in Alternators.	8	CO3	L4
(ii)	The neutral point of 25 MVA, 11 kV alternator is grounded through a resistance of 5Ω , the relay is set to operate when there is an out of balance current of 2A. The CTs used have a ratio of 1000/5. (neglect reactance of alternator) Calculate (i) the percentage of stator winding protected against an earth fault (ii) the minimum value of earthing resistance to protect 95% of the winding	5	CO3	L5
OR				
13(b)(i)	Analyze the different faults and protection schemes adopted against in Transformers.	8	CO3	L4
(ii)	A 3-phase transformer having line-voltage ratio of 0.4 kV/11kV is connected in star-delta and protective transformers on the 400 V side have a current ratio of 500/5. What must be the ratio of the protective transformers on the 11 kV side ?	5	CO3	L5
14 (a)	Synthesize the various distance relays using static comparators.	13	CO4	L4
OR				
14 (b) (i)	Obtain the duality relation between amplitude and phase comparators.	10	CO4	L4
(ii)	Give the flowchart for numerical protection of Transformers.	3	CO4	L4
15 (a)	Analyze the arcing phenomena and arc extinction in oil and vacuum circuit breakers.	(8+7)	CO5	L4
OR				
15 (b)	Analyze the current chopping in air circuit breakers and thus obtain an expression for 'R' to damp high frequency re-striking voltage transients.	13	CO5	L4

PART- C (1 x 15 = 15 Marks)
(Q.No.16 is compulsory)

Q. No	Questions	Marks	CO	BL
16.	Analyze the possibility of Numerical protection for the different types of fault in the Electrical Laboratory and suggest an alternative protection scheme against each fault.	15	CO4	L6

